

Practical approach for quality screening of reclaimed asphalt materials based on a mechanistic approach

Alexandros Margaritis, João Crucho, Tine Tanghe, Stefan Vansteenkiste, Nathalie Piérard and Ann Vanelstraete

10/09/2024

Content

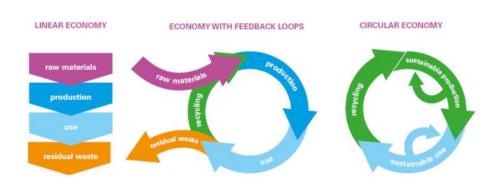
Background – research gap

RA materials

CBI approach

CBI results (vs other properties)

Concluding points


Reclaimed asphalt (RA)

*Reuse of RA in Belgium since late '70s (multi-recycling)

Enhance recyclability

- Increase (re)use of reclaimed asphalt (RA) (also in surface layers)
- Retain/increase durability while enhancing circularity
- Environmentally friendly bituminous mixtures and testing techniques.

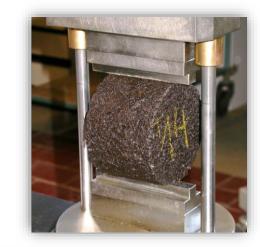
Source: Rli, Circular Economy: From Wish to Practice

Research gap

- RA ageing state → based on the RA binder properties
- In Europe, is based on pen value (or T_{RRR})
- Penetration test limitations on very aged RA binder (pen < 10)
- Discriminative enough?
- Bulk (RA) response is preferred over binder response solely
- Need for a mechanistic test

RA materials

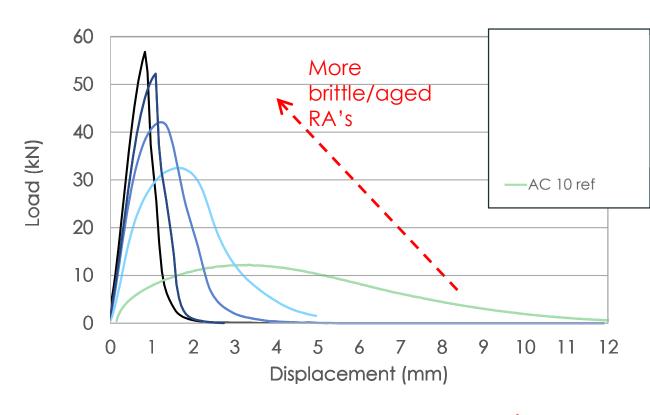
- RA collection → 7 different RA materials
- NMAS 10 mm (6 RA's) / NMAS 14 mm (1 RA) ("white")
- RA binder penetration between 7 and 20 x 0.1mm
- 2 were further aged (FA) → TS 12697-52 (RILEM protocol)



IDT principle for RA characterisation

Test description:

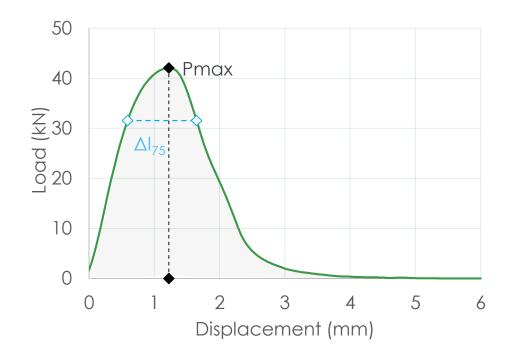
- Indirect tensile test (IDT/ITS) principle
- Specimens made of 100% RA
- Gyratory compacted samples (@155°C) at 7% target air-voids
- 4 replicates; dimensions Ø150 mm & H 62 mm
- Testing conditions:
 - Temperature 25°C
 - Loading rate 50 mm/min



IDT principle for RA characterisation

Impact of loading-displacement (LD) curve on RA ageing state?

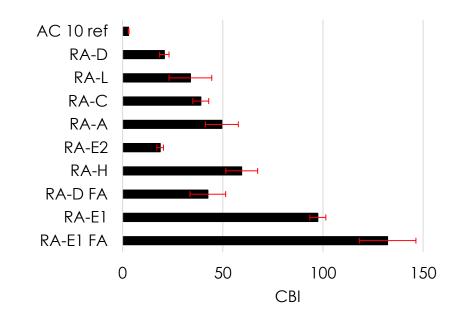
- Steeper curves
- Higher max load
 (strength-toughness related parameter)
- "Narrower" bell-curve
 (brittleness-related parameter)



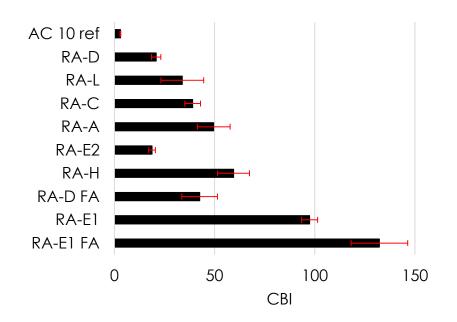
Cracking-based brittleness index - CBI

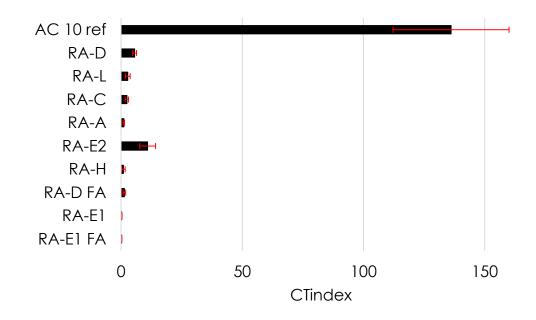
- max load Pmax
- Displacement difference (Δ) or width of curve at 75%Pmax ΔI_{75}
- Higher CBI values indicate more brittle mixture

$$CBI = \frac{P_{max}}{\Delta l_{75}}$$



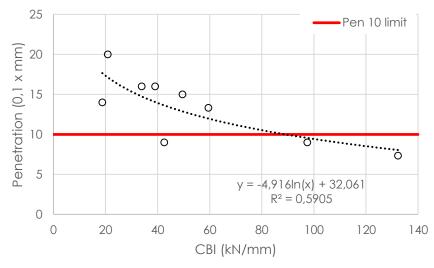
- 9 RA materials tested so far
 - 2 "further aged" (denoted FA)
- RA E1 FA (pen 7) shows highest value
- AC 10 ref (unaged) the lowest
- RA further ageing increases CBI values
- Generally ranking reflects well "binder ageing"

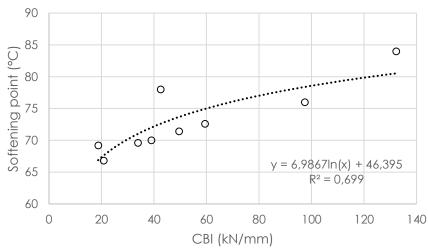




RA screening – CBI vs CT_{index}

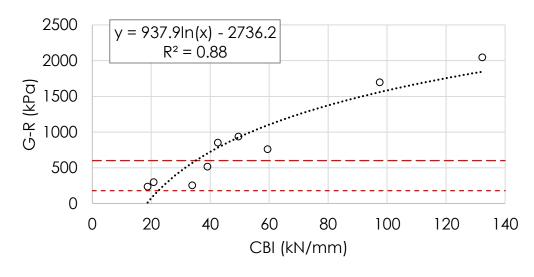
- Low discriminating power between RA's when using CT_{index}
- CBI allows to screen/discriminate more effectively

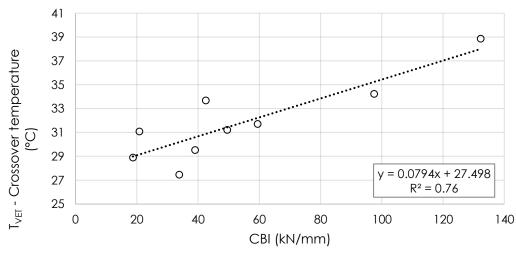




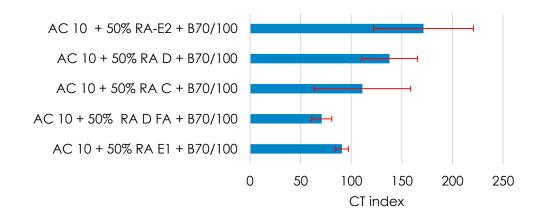
CBI vs (standard) bit. properties

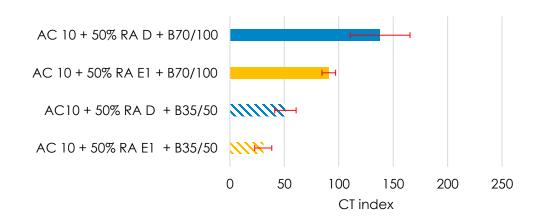
- 3 RA's fall below the pen 10 limit (In BE those are prohibited for re-use)
 - → brittleness behaviour, however, is very different
- Correlation exists between CBI and binder properties



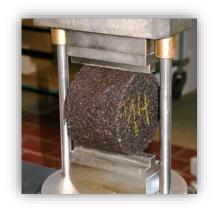


CBI vs (DSR) bit. properties


- Higher T_{VET} and G-R values indicate more aged and prone to cracking binders
- CBI value shows similar tendency
- Binder ageing state influential factor on cracking resistance → but not the only one
- Other parameters have an effect (binder content, filler content, filler type etc.)
- CBI captures global response of RA



- 5 AC mixtures with 50% RA (binder replacement)
- higher CT_{index} values indicate less brittle and more cracking-resistant mixtures
- CT_{index} shows similar tendency as CBI on RA level
- Using a stiffer grade binder will influence cracking resistance
 importance to compensate
 - → importance to compensate carefully



General take-away points:

- The new test protocol is able to screen between RA's
- Higher CBI values reflect RA materials with more brittle behaviour and higher ageing severity
- Logical trend between RA binder properties and CBI
- CBI captures global response of RA-material (not only bitumen properties); uses common equipment and is solvent free method

Alexandros Margaritis

Researcher

T +32 2 766 03 56

a.margaritis@brrc.be

João Crucho

Researcher

T +32 2 766 03 40

j.crucho@brrc.be

Tine Tanghe

Researcher / Responsible Lab Mechanical & Physico-Chemical Testing

T +32 2 766 03 30

t.tanghe@brrc.be