Circular Stone Mastic Asphalt

why, how & what

Alex van de Wall Manager Quality, Research & Development

KWS Infra

Introduction

Transition to a circular road construction

SMA using up to 70% of recycled pavement (RAP)

Regulation
 CROW Asfaltkwaliteitsloket

Concept

Same requirements as regular SMA
 Only RAP from SMA pavements (*)
 No additional crushinhg or screening
 Biobased rejuvenator

(*) Separate milling as foundation for the recycling strategy

Acceptance is essential

Independent validation of Claims & Quality
 Validation TRL 4 and TRL 7
 TRL 4: SMA 11B 70% RAP
 TRL 7: SMA 11B and SMA 8G+
 Biobased rejuvenator

Materials and Methods

Development based on risk analysis & evaluation

Focused on functional behaviour and binder properties

- ∧ Ravelling (RSAT)
- Deformation

Skid resistance (PSV, FAP)

Materials and Methods

▲ Basic testing: grading, binder content and porosity

▲ Binder testing: Fraass, IR and rheological characterization

6

▲ Functional testing: RSAT, ITS(R) and Cyclic ITT

∧ Binder blending: extraction in five phases

Skid resistance: FAP

▲ Test sections!

Results TRL 4

Parameter	Result	Requirement	Source Requirement	Sample source
Bmin [%]	6,6	≥ 6,6	[1]	Lab
Vmin [%]	5,5	≥ 5,0	[1]	Lab
Calculated Penetration	81	70/100	[1]	Lab
Penetration after extraction	45	42	[1]	Lab
Breekpunt Fraass [°C]	-14	< -10	RWS (for PA)	Lab
Binder stiffness	As reference	As reference	RWS (for PA)	Lab
ITSR	100	> 80	[1]	Lab
Grading	Compliant	Tabel 81.2.9	[1]	Lab
Blending	100%	total	RWS (for PA)	Asphalt plant
ITS 1°C [MPa]	2,98	≥ 1,8	RWS (for PA)	Lab
RSAT [gram]	2,3	NA	-	Lab
PSV RAP	58	≥ 58	[1]	RAP
PSV new aggregate	60	≥ 58	[1]	Aggregate
FAP ₉₀	0,42	NA	RWS (for PA)	Lab
FAP ₂₇₀	0,42	-NA	-	Lab

Results TRL 7

Parameter	Result	Requirement	Source Requirement	Sample source
Bitumen [%]	6,7	≥ 6,6	[1]	Core
Porosity [%]	4,3	6,0 +/- 3,0	[1]	Core
Grading	Compliant	Tabel 81.2.7	[1]	Core
Penetration after extraction	55	≥ 48	[1]	Asphalt plant
Stiffness bitumen Ring & Ball	As reference 52,2	As reference Equal (52,8)	RWS (for PA) [1]	Asphalt plant Asphalt plant
ITSR	90	> 80	[1]	Asphalt plant
ITS 15°C [MPa]	1,39	NA	RWS (for PA)	Asphalt plant
Skid resistance	0,55	≥ 0,44	[1]	Test section
Workability	As reference	NA	-	Test section

Conclusions validation

Performance at the same level
ECI reduction with 50%
Optimum RAP content is 50%
Milling more expensive,
Sustainability and economical advantage
Requires change Financial model of project

SMA 11 70% RAP

March 2022

April 2024

NKWS

To make the sustainability transition

▲ Focus on what really has impact

▲ Do the effort (research)

Achieve trust (independent validation of claims)

Open Cooperation and transparency key

