

Cold Recycling with Foamed Bitumen, one step forward to implementation in Germany's road network

1st International Workshop on Asphalt Recycling Technologies - ART2024

Federal Highway Research Institute

4RT 20.

Section Design and Structure of Pavements 10.09.2024 |Mehdi Kalantari| BASt

What will be presented?

- Why a step forward?
- The APT project and the results
- Next step to implementation

Why a step forward?

The way to implementation

Learning

- Gaining knowledge
- Laboratory level
- Community: Small

PhD (university)

Research project

Laboratory level

Technology

 Cold Recycling BSM with FB

Mark and an in the approximation Read Market

3

Experiencing

- Gaining experience
- Upscaling, test field level
- Community: Middle

• Accelerated Pavement Testing at duraBASt

Transferring

- Exchanging knowledge & experience
- Upscaling, real field pilots
- Community: Big

Implementation

Cold Recycling Technology

- Aggregate mix + Bitumen + hydraulic binder + water
- \checkmark Aggregate mix \rightarrow mainly recycled aggregates (+ fresh aggregates)
- Bitumen: Emulsion or Foam
- Hydraulic binder: Lime, Cement, ...
- \checkmark Water \rightarrow **Curing** over the time
- In-Place or In-plant
- \checkmark Depending to the binders' content \rightarrow different behaviors

Cold Recycling Technology

Cold Recycled Mixes with high cement and bitumen emulsion content
Cold recycling with foamed bitumen?
Low cement & bitumen content
Positive international feedback

🥒 Interesting

Learning

- Foamed Bitumen & Cement Stabilized Mixes, University of Siegen (2013)
 - International knowledge review
 - mixing, compacting, curing, testing
 - Effect of binding agents, curing, temperature
 - Stiffness model and pavement structural design
- Foamed bitumen-phase 1, BASt (2017)
 - The laboratory setup, specimen production & testing

http://dx.doi.org/10.25819/ubsi/10082

Loa (Mill	iding classes lion 10 ton)	BK100	BK32	BK10	BK3.2	BK1.8	BK1.0	BK0.3
Pavement layers (cm)	Wearing (DS)	4	3	4	4	4	4	4
	Binder (BS)	8	6	8	6	-	-	-
	HMA Base (TS)	10	8	-	-	-	-	-
	FCSM Base	18	18	19	17	22	19	16
	Anti- frost (FSS)	55	60	64	63	64	67	60
Cap (Mill	bacity lion 10 ton)	103.9	32.6	11.9	3.99	2.4	1.06	0.345

6

Accelerated Pavement Testing

- construction 2019
- In-Plant production
- 75% RAP + 25% Sand (0-2mm)
- 2.2% bitumen, 1% cement (1-425N)
- loading 2020 2022,

total 10.9 Million (10 ton axle)

Super single 50 kN, 6000 cycles/hr.

Demonstration, investigation and reference areal of BASt

Cologne

Bk 1.0 class from RAStO - 12 catalogue 4 cm DS 14 cm TS

FCSM

unbound

base

For 1 million (10 tonESAL) capacity 4 cm DS 20 cm BSM

Homogeneity

- We used FWD to look at the homogeneity of the bearing capacity along the test section
- SCI300 (d300-d0) is an indicator of the upper layers' bearing capacity
- SCI300 at each 50 cm

Permanent deformation

Positions [m]

- 2 different cold recycling material qualities
- both satisfied the design
- PS: 5 MESAL (10ton) is equal to around 11 MESAL of 8.2 ton

Rut Depth FC1_CR Art depth FC2_CR Rut depth FC3_RF

bast

Research Institute

-ederal Hig

Material behavior

Material behavior

11

Detailed Survey

Take away points from APT program

- It is possible to produce and design pavements with cold recycled layers with the same or even better performance than conventional pavements.
- Homogeneity is an important point (input material, preparation, production, construction)
- Permanent deformation is the failure mode of BSM
- **Stiffness** is not only temperature dependent but also **stress history** dependent
- Factor of 1.5 to transfer the thickness of HMA base to BSM is conservative but safe for beginners!

Next Step?

The way to implementation

Learning

- Gaining knowledge
- Laboratory level
- Community: Small

PhDs (university)

Research projects

Laboratory level

Technology

14

• BSM with FB

Experiencing

- Gaining experience
- Upscaling, test field level
- Community: Middle
- duraBASt
- APT projects

Transferring

- Exchanging knowledge & experience
- Upscaling, real field pilots
- Community: Big
- Networking (FEHRL initiative, bilateral)
- Stakeholders' engagement (NRA, industry, contractor, institutes, laboratories)
- Supporting (guidelines, workshops, monitoring)

Implementation

| Dr. Mehdi Kalantari: BASt |

Thank you kalantari@bast.de